Packing chromatic number of transformation graphs
نویسندگان
چکیده
منابع مشابه
Packing Chromatic Number of Distance Graphs
The packing chromatic number (G) of a graph G is the smallest integer k such that vertices of G can be partitioned into disjoint classes X1; :::; Xk where vertices in Xi have pairwise distance greater than i. We study the packing chromatic number of in nite distance graphs G(Z; D), i.e. graphs with the set Z of integers as vertex set and in which two distinct vertices i; j 2 Z are adjacent if a...
متن کاملOn Open Packing Number of Graphs
In a graph G = (V,E), a subset $S⊂V$ is said to be an open packing set if no two vertices of S have a common neighbour in G. The maximum cardinality of an open packing set is called the open packing number and is denoted by $ρ^{o}$. This paper further studies on this parameter by obtaining some new bounds.
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملOn packing chromatic number of subcubic outerplanar graphs
The question of whether subcubic graphs have finite packing chromatic number or not is still open although positive responses are known for some subclasses, including subcubic trees, base-3 Sierpiski graphs and hexagonal lattices. In this paper, we answer positively to the question for some subcubic outerplanar graphs. We provide asymptotic bounds depending on structural properties of the weak ...
متن کاملThe packing chromatic number of infinite product graphs
The packing chromatic number χρ(G) of a graph G is the smallest integer k such that the vertex set V (G) can be partitioned into disjoint classes X1, . . . , Xk, where vertices in Xi have pairwise distance greater than i. For the Cartesian product of a path and the 2-dimensional square lattice it is proved that χρ(Pm Z) = ∞ for any m ≥ 2, thus extending the result χρ(Z) = ∞ of Finbow and Rall [...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Thermal Science
سال: 2019
ISSN: 0354-9836,2334-7163
DOI: 10.2298/tsci190720363d